Can Natural Gas Be Used To Create Power With Fewer Emissions?

This article is part of Upstarta series about young companies harnessing new science and technology.

LA PORTE, TEXAS – It wasn’t like it’s in the movies. Nobody pulled down a big switch on the wall, producing a satisfying “thunk” and crackle of electricity. Instead, one evening last November, a shift supervisor for NET Power, a clean-energy technology company, clicked on a mouse several times in a control room set in a double-wide trailer. With the last click, the company’s generator synchronized with the Texas grid, providing a major step toward providing power to homes and businesses. Twenty-seven minutes later, the supervisor cuts off the connection.

It may not sound like much, but a brief display at this demonstration plant – with a fraction of its capacity of a full-scale facility – showed a novel way of generating electricity that burns natural gas but does not generate the same greenhouse gas. Emissions as fossil fuels, could play nicely with the nation’s power grid.

Cam Hosie, who heads 8 Rivers, the earliest shareholder in NET Power, said he was monitoring the test that evening on his laptop. When the plant synced up, he recalled, “I cried.”

It was a milestone for NET Power, which has been working toward technology for 12 years. That synchronization – a tricky feat of matching the grid’s frequency and other characteristics – opened an enormous flow of interest, as companies looking for a cleaner way to generate power began to seek license from NET Power’s technology. Potential customers have announced plans for new plants around the world, including in the United States, Canada, Germany and Britain.

“If this were to become commercially viable, it could play a key role, among others, in our ability to meet net-zero targets in the US, as well as globally,” said Carrie Jenks, Executive Director of Harvard Law School’s environmental and energy law program.

Most electrical plants boil water by burning coal or natural gas, or through nuclear fission; The resulting steam then spins a turbine. The burning of those fossil fuels produces greenhouse gases, the primary culprits in climate change. Scientists warn that if we can’t stop those emissions, increasingly dire disasters lie ahead.

Renewable energy (like solar, wind and geothermal power) has grown tremendously as its price has dropped. But many experts suggest that the grid will still need electricity sources that can start up quickly – what the trade calls “dispatchable” power – to fill gaps in the supply of sunshine and wind. And while some researchers have suggested that the electric grid can be built entirely on renewable energy and storage, Professor Jenks said, “I think fossil will continue in our energy system in the near future.” And so “You need a host of solutions for us to be able to keep moving on the path we need to go now. We don’t know yet what a silver bullet is – and I doubt we’ll ever find a silver bullet, “she said.

That’s where fans of NET Power say the company can make a difference: its technology burns without natural gas causing the biggest problems fossil fuels typically do. It combines a combination of natural gas and oxygen inside a circulating stream of high-temperature carbon dioxide under tremendous pressure. The resulting carbon dioxide drives the turbine into a form known as a supercritical fluid.

In other power plants, capturing carbon dioxide means adding separate equipment that draws sufficient energy. NET Power’s system captures the carbon dioxide it creates as part of its cycle, not as an add-on. The excess carbon dioxide can then be drawn off and stored underground or used in other industrial processes. The plant’s operations produce none of the health-damaging particulates, or smog-producing gases like oxides of nitrogen and sodium, that coal plants spew.

Its only other byproduct? Water.

With commercial success, NET Power believes it will meaningfully reduce global carbon emissions, said Ron DeGregorio, the company’s chief executive. Many potential customers could still opt for coal power, but “bring this credibly to market, and this is the change in the world.”

The company licenses its technology to its customers, and its partners and investors will build and operate the plants. They include the oil giant Occidental Petroleum, which is making a big bet on carbon capture; Constellation, which runs power plants; and Baker Hughes, which manufactures the kind of precision equipment the process requires. That kind of investment, said Rick Callahan, president of Low Carbon Ventures, a subsidiary of Occidental, “demonstrates that people are putting their money where their mouth is with this project.”

The technology, like any power-generating tool, can be applied in a number of ways, including producing power for industrial processes. Potential customers are being imaginative. One iteration of the process, planned by the energy company TES, established in Belgium, proposes to incorporate NET power technology into a complex chain of energy storage and generation as a way to provide hydrogen-based power. “The NET Power technology is a perfect fit” for the proposed system, said Jens Schmidt, Chief Technology Officer for TES.

Another project proposed in Louisiana would use NET Power’s technology to produce various products, including hydrogen, oxygen and nitrogen. Known as the G2 Net-Zero, it would also include an export terminal for liquefied natural gas, or LNG Charles E. Roemer IV, president of the company, said while many LNG export terminals were planned or under construction in coastal Louisiana, building a cleaner alternative could create a new paradigm.

The technology has spawned criticisms, especially of its reliance on methane infrastructure and its current-day limitations of carbon storage. Many environmentalists oppose LNG terminals, in large part because they extend the use of fossil fuels; The Sierra Club recently targeted those planned for Cameron, in Southwest Louisiana, including G2 Net-Zero, arguing that they would cause environmental damage to the area.

“As long as a power plant is powered by methane gas, it will continue to harm our climate and communities,” said Jeremy Fisher, Senior Advisor for Strategic Research and Development for the Sierra Club. “This technology will protect families living with pollution from fracking wells or dangerous gas pipelines, and it will continue to allow for massive – and often undercounted – amounts of climate-warming methane leaked from wellheads, pipelines and plants. “

Mr. Roemer referred to research showing that proper monitoring and quick action could reduce methane leaks greatly and said he would work with natural gas suppliers that were “committed to the lowering of emissions.” As for exporting LNG to be burned elsewhere, he said that anyone receiving his LNG could burn it in another NET power plant and avoid greenhouse gas emissions. “I’m going to sell my product to people who are committed to the same things I’m committed to,” he said.

“The problem we’re trying to solve is abundant, clean affordable energy,” Mr. Roemer said. “I don’t see how you could be against what I’m doing.”

If, through regulation, nations make it profitable to capture carbon dioxide and stow it, technologies like NET Power’s will become even more attractive. Yet while the Intergovernmental Panel on Climate Change has repeatedly cited carbon capture and storage as part of the solution to climate change, the details have yet to be worked out – and many in the climate science community frame the technology as an excuse to keep burning fossil. fuels, not a good-faith effort to decarbonize.

“What do you do with that CO2?” asked Michael Mann, a climate scientist at Penn State University. “If it used to enhance oil recovery, it is still contributing to the problems. If it is buried, how safely and permanently is it buried? “

Supporters of the technology note that solar and wind power looked like long shots before government incentives helped refine the technologies and drive costs down. Virginia Burkett, a leading scientist at the United States Geological Survey, said that deep geological formations in carbon sequestration was a “proven technology” and noted that the National Academies of Science called it ready for large-scale deployment in 2019.

Julio Friedmann, an expert on carbon-removal technologies, called NET Power’s technology “an incredibly elegant solution to a difficult problem.” However, Dr. Friedmann, who has served as an adviser to the company, said that success on a commercial scale was not certain.

“I’ve had many discussions with physicists who say, ‘The physics is settled; the rest is just engineering. ‘ Well, the engineering is really hard. In theory, there is no difference between theory and practice. In practice, there is, “he said. “It’s still possible that they will fail – but I don’t think so.”

Leave a Comment